Algebra y Geometría Analítica Planificación Ciclo lectivo 2023

1. Datos administrativos de la asignatura			
Departamento:	Ciencias Básicas	Carrera:	Homogénea Ingeniería
Asignatura:	Algebra y Geometría Analítica		
Nivel de la carrera:	1	Duración:	Cuatrimestral
Bloque curricular:	Ciencias Básicas de la Ingeniería		
Carga horaria presencial	7.5 (reloj)	Carga Horaria total:	120 (reloj)
semanal:			
Carga horaria no presencial	0	% horas no	0
semanal (si correspondiese):		presenciales:	
		(si correspondiese)	
Profesor/es	RISUEÑO, María Antonela	Dedicación:	Simple
Titular/Asociado/Adjunto:	(Adjunto interino)		
Auxiliar/es de 1º/JTP:	CAMPOMANES, Miguel	Dedicación:	Simple
	COFRÉ, Lorena		Simple
	PANIAGUA, Liliana		Simple
	RAFTI, Ana Julia		Simple
	DEL DAGO, Mauro		Simple

2. Fundamentación y análisis de la asignatura

La asignatura pertenece al 1° nivel de Ing. Mecánica, Civil, Eléctrica y Electrónica, bloque Ciencias Básicas.

Se propone desde este espacio curricular, a partir de los ejes Álgebra Lineal y Geometría Analítica, fomentar el pensamiento lógico-deductivo que favorezca la capacidad de los y las estudiantes para hacer conjeturas, formular y resolver problemas y analizar soluciones en aplicaciones básicas de Ingeniería, introduciéndolos a la notación y el lenguaje específico de la matemática.

3. Relación de la asignatura con el Perfil de Egreso de la carrera, las Actividades Reservadas, los Alcances, las Competencias de Egreso y su tributación.

En un todo de acuerdo con la Resolución ME 1254/18, la materia otorga herramientas elementales para:

• La actividad reservada 1 de la carrera Ingeniería Mecánica: Diseñar, proyectar y calcular máquinas, estructuras, instalaciones y sistemas mecánicos, térmicos y de fluidos mecánicos, sistemas de

- almacenaje de sólidos, líquidos y gases; dispositivos mecánicos en sistemas de generación de energía; y sistemas de automatización y control.
- La actividad reservada 1 de la carrera Ingeniería Civil: Diseñar, calcular y proyectar estructuras, edificios, obras; a) civiles y puentes, y sus obras complementarias e instalaciones concernientes al ámbito de su competencia; b) de regulación, almacenamiento, captación, conducción y distribución de sólidos, líquidos y gases, riego, desagüe y drenaje, de corrección y regulación fluvial y marítima, de saneamiento urbano y rural, estructuras geotécnicas, obras viales, ferroviarias, portuarias y aeroportuarias.
- La actividad reservada 1 de la carrera Ingeniería Eléctrica: Diseñar, calcular y proyectar sistemas de generación, transmisión, conversión, distribución y utilización de energía eléctrica; sistema de control y automatización y sistemas de protección eléctrica.
- La actividad reservada 1 de la carrera Ingeniería Electrónica: Diseñar, proyectar y calcular sistemas, equipos y dispositivos de generación, transmisión y/o procesamiento de campos y señales analógicos y digitales; circuitos integrados; hardware de sistemas de cómputo de propósito general y/o específico y el software a él asociado; hardware y software de sistemas embebidos y dispositivos lógicos programables; sistemas de automatización y control; sistemas de procesamiento y de comunicación de datos y sistemas irradiantes.
- Las competencias genéricas: Comunicarse con efectividad, en forma gráfica (manual y digitalmente), en forma oral y escrita integrando equipos de trabajo para la acción interdisciplinaria.

Competencias específicas de la	Competencias genéricas	Competencias genéricas sociales,
carrera	tecnológicas	políticas y actitudinales
CE 1.1. Ingeniería civil: 1	CG1: 1	CG6: 1
CE 1.2. Ingeniería civil: 1	CG2: 0	CG7: 1
CE 1.3. Ingeniería civil: 1	CG3: 0	CG8: 0
	CG4: 1	CG9: 0
	CG5: 0	CG10: 0

Justificación:

<u>CE 1.1. Ingeniería civil</u>: Planificar, diseñar, calcular, proyectar y construir obras civiles y de arquitectura, obras complementarias, de infraestructura, transporte y urbanismo, con aplicación de la legislación vigente.

• Se tributa desde el álgebra vectorial para la representación de cargas y caudales; desde sistemas de ecuaciones lineales para la formulación matemática de sistemas isostáticos; y desde la geometría analítica para el diseño de estructuras civiles.

<u>CE 1.2. Ingeniería civil</u>: Medir, calcular y representar planimetricamente el terreno y las obras construidas o a construirse, con sus implicancias legales.

- Se tributa desde el álgebra vectorial y la geometría analítica para el diseño geométrico de vías de comunicación.
- <u>CE 1.3. Ingeniería civil</u>: Planificar, diseñar, calcular, proyectar y construir obras e instalaciones para el almacenamiento, captación, tratamiento, conducción y distribución de sólidos, líquidos y gases, incluidos sus residuos.
 - Se tributa desde el álgebra vectorial para la representación de cargas y caudales; desde sistemas de ecuaciones lineales para la formulación matemática de sistemas isostáticos; y desde la geometría analítica para el diseño de instalaciones y redes de distribución.
- CG 1: Identificar, formular y resolver problemas de ingeniería.
 - Se tributa desde las habilidades adquiridas en la resolución de los distintos problemas de matemática aplicada que propone la cátedra.
- <u>CG 4</u>: Utilizar de manera efectiva las técnicas y herramientas de aplicación en la ingeniería.
 - Se tributa desde la utilización de distintos métodos algebraicos para la resolución de problemas aplicados y la efectividad de cada uno de estos.
 - Mediante el uso de distintos programas de cálculo matemático como herramienta de apoyo en la resolución de los problemas aplicados que propone la cátedra.
- CG 6: Desempeñarse de manera efectiva en equipos de trabajo
 - Se tributa desde la resolución grupal de los trabajos/proyectos para aprobación directa.
- CG 7: Comunicarse con efectividad
 - Se prevé la participación obligatoria en foros de discusión temáticos.
 - Mediante la defensa oral y escrita de los trabajos/proyectos mencionados en CS1.

4. Propósito, objetivos y resultados de aprendizaje

4.1. Propósito

Brindar a las y los estudiantes herramientas matemáticas sólidas que impacten positivamente en el estudio de problemas elementales de la ingeniería, desde su concepción teórica y mediante el uso de la herramienta computacional.

4.2. Objetivos establecidos en el Diseño Curricular

- Desarrollar capacidad de abstracción, generalización y particularización, fortaleciendo el pensamiento deductivo e inductivo mediante el uso y aplicación de espacios vectoriales y transformaciones lineales.
- Aplicar modelos lineales (matrices, determinantes, sistemas de ecuaciones lineales, autovalores y autovectores) a la resolución de problemas, analizándolas mediante argumentos teóricos, empleando técnicas, procesos analíticos y representaciones gráficas.
- Resolver problemas de aplicación modelizados matemáticamente, utilizando vectores y matrices, interpretando los resultados obtenidos en el contexto de la situación, identificando sus elementos,

- usando distintas representaciones semióticas y comunicándolos mediante lenguaje matemático apropiado.
- Resolver problemas de aplicación utilizando elementos de Geometría Analítica (rectas, planos y formas cuadráticas), interpretando los resultados obtenidos en el contexto de la situación, identificando sus elementos y comunicándolos mediante lenguaje geométrico y algebraico.
- Utilizar software de lenguaje simbólico (sistemas de ecuaciones, matrices, transformaciones lineales, entre otros) y gráfico (vectores, rectas, planos, formas cuadráticas, entre otros) para la resolución de situaciones problemáticas.

4.3. Objetos de conocimiento y Resultados de aprendizaje

Los objetos de conocimiento son tres, siendo cada uno representativo de las unidades temáticas del programa sintético de la asignatura. A continuación, se describen y se acompaña en cada caso el Resultado de Aprendizaje (RA).

Objeto de conocimiento 1: Sistemas de ecuaciones lineales

Resultado de Aprendizaje

Resuelve sistemas de ecuaciones lineales para encontrar posibles soluciones a situaciones problemáticas planteadas a partir de distintos enunciados.

Los sistemas de ecuaciones lineales son muy utilizados en la ingeniería para representar la dinámica de cualquier sistema dinámico lineal, modelar circuitos lineales eléctricos y expresar cualquier tipo de relación lineal entre entidades físicas, tanto mecánicas como eléctricas, a partir de datos dados.

Este Resultado de Aprendizaje se relaciona pertinentemente con las competencias de ingeniería civil CE 1.1, CE 1.3 para la formulación matemática de sistemas isostáticos; y las competencias tecnológicas CG 1, CG 4, a partir de las habilidades adquiridas en la resolución de los distintos problemas de matemática aplicada que propone la cátedra, la utilización de distintos métodos algebraicos para la resolución de problemas aplicados y la efectividad de cada uno de estos, y mediante el uso de distintos programas de cálculo matemático como herramienta de apoyo en la resolución de los problemas aplicados que propone la cátedra. Por último, se tributa a las competencias sociales CG6 y CG7, desde la resolución grupal de los trabajos/proyectos para aprobación directa, así como también la defensa oral y escrita de los mismos.

Objeto de conocimiento 2: Álgebra vectorial

Resultado de Aprendizaje

Utiliza el álgebra vectorial para la comprensión de magnitudes orientadas, representadas en un sistema de referencia geométrico y/o físico.

El álgebra vectorial permite representar, analizar y realizar distintas operaciones que involucran magnitudes físicas orientadas respecto de uno o más sistemas de referencia (tales como fuerzas mecánicas y eléctricas, desplazamientos, ubicaciones geométricas, etc.), de vital importancia en cualquier ingeniería.

El Resultado de Aprendizaje se relaciona pertinentemente con las competencias de ingeniería civil CE 1.1, CE 1.2,CE 1.3 para la representación de fuerzas, desplazamientos y flujos, para la representación de cargas y caudales y para el diseño geométrico de vías de comunicación; y las competencias tecnológicas CG1, CG4.

a partir de las habilidades adquiridas en la resolución de los distintos problemas de matemática aplicada que propone la cátedra, la utilización de distintos métodos algebraicos para la resolución de problemas aplicados y la efectividad de cada uno de estos, y mediante el uso de distintos programas de cálculo matemático como herramienta de apoyo en la resolución de los problemas aplicados que propone la cátedra. Por último, se tributa a las competencias sociales CG6 y CG7, desde la resolución grupal de los trabajos/proyectos para aprobación directa, así como también la defensa oral y escrita de los mismos.

Objeto de conocimiento 3: Geometría analítica

Resultado de Aprendizaje

Utiliza la geometría analítica para formular matemáticamente regiones en el plano y el espacio, y calcular distancias, intersecciones y orientaciones entre estas, así como el área o volumen de cada una, a partir de datos dados.

La Geometría Analítica permite hallar y estudiar los lugares geométricos de forma sistemática y general. Provee de métodos para transformar los problemas geométricos en problemas algebraicos, resolverlos analíticamente e interpretar geométricamente los resultados.

El Resultado de Aprendizaje se relaciona pertinentemente con las competencias de ingeniería civil CE 1.1, CE 1.2, CE 1.3 para el diseño de estructuras civiles, instalaciones y redes de distribución, y para el diseño geométrico de vías de comunicación; y las competencias tecnológicas CG1, CG4, a partir de las habilidades adquiridas en la resolución de los distintos problemas de matemática aplicada que propone la cátedra, la utilización de distintos métodos algebraicos para la resolución de problemas aplicados y la efectividad de cada uno de estos, y mediante el uso de distintos programas de cálculo matemático como herramienta de apoyo en la resolución de los problemas aplicados que propone la cátedra. Por último, se tributa a las competencias sociales CG6 y CG7, desde la resolución grupal de los trabajos/proyectos para aprobación directa, así como también la defensa oral y escrita de los mismos.

5. Integración y articulación de la asignatura con el área de conocimiento (horizontal y/o vertical), el nivel de la carrera (horizontal) y el diseño curricular.

En forma horizontal, esta asignatura articula con la asignatura Análisis Matemático I y hacia niveles superiores, con las asignaturas Análisis Matemático II, Física I, Física II, y Probabilidad y Estadística.

6. Metodología de enseñanza

Las estrategias propuestas a continuación son las que trabajan en distintos tiempos de la cursada los distintos docentes.

RA 1: Resuelve sistemas de ecuaciones lineales para encontrar posibles soluciones a situaciones problemáticas planteadas a partir de distintos enunciados.

	Т			
Unidad temática	Estrategias de enseñanza y aprendizaje	Actividades formativas y carga horaria		
		En clase	Fuera de clase	
1 y 2	Clase interactiva teórica práctica	Vinculación con saberes previos. Exposición problematizadora y realización de preguntas. Respuestas de estudiantes. Utilización de GeoGebra y Matrix Calc para la realización de operaciones matriciales.	Organización de conceptos y casos. Complemento con videos tutoriales. Elaboración de un Informe sobre problemática presentada. Utilización de GeoGebra y Matrix Calc para la realización de operaciones matriciales.	
	Resolución de ejercicios	ejercicios elaborada por los y las integrantes de la cátedra. Los y las estudiantes resuelven la guía	Presentación de resultados y devolución a través del Aula Virtual, utilizando el recurso "Tarea". Utilización de GeoGebra y Matrix Calc para la realización de operaciones matriciales.	
	Aprendizaje flexible	de estudio en formato multimedia y guía de	Devolución a través del Aula Virtual, utilizando el recurso "Tarea".	

estudio y aplican los saberes en la resolución de la guía de ejercicios, con la orientación y acompañamiento de los y las integrantes de la cátedra. Los y las estudiantes resuelven el Trabajo Práctico obligatorio elaborado por la cátedra.

RA 2: Utiliza el álgebra vectorial para la comprensión de magnitudes orientadas, representadas en un sistema de referencia geométrico y/o físico.

3, 4, 5 y 6 Clase interactiva teórica práctica

Vinculación con saberes previos. Exposición problematizadora y realización de preguntas. Respuestas de estudiantes. Utilización de GeoGebra para la interpretación geométrica de los distintos conceptos y Matrix Calc para el cálculo algebraico de autovalores y autovectores.

Organización de conceptos y casos. Complemento con videos tutoriales. Elaboración de un Informe sobre problemática presentada. Utilización de GeoGebra para la interpretación geométrica de los distintos conceptos y Matrix Calc para el cálculo algebraico de autovalores y autovectores.

Resolución de ejercicios

los y las integrantes de la Presentación cátedra. resuelven la aplicando mayoritariamente trabajando en grupo con la orientación acompañamiento de los y las integrantes de la cátedra. Utilización de GeoGebra para la interpretación geométrica de los distintos conceptos y

Matrix Calc para el cálculo algebraico de autovalores

y autovectores.

Presentación de guía de Consulta a docentes utilizando el foro ejercicios elaborada por del Aula Virtual. resultados de devolución a través del Aula Virtual. Los y las estudiantes utilizando el recurso "Tarea". guía Utilización de GeoGebra para la saberes, interpretación geométrica de los distintos conceptos y Matrix Calc para el cálculo algebraico de autovalores y

autovectores.

A 11 . 1 . G 11 . 1		Consulta a docentes a través del foro
Aprendizaje flexible	de estudio en formato	
	multimedia y guía de	Devolución a través del Aula Virtual,
	ejercicios elaborados por	utilizando el recurso "Tarea".
	los y las integrantes de la	
	cátedra.	
	Los y las estudiantes en	
	grupo realizan la lectura y	
	consulta del material de	
	estudio y aplican los	
	saberes en la resolución	
	de la guía de ejercicios,	
	con la orientación y	
	acompañamiento de los y	
	las integrantes de la	
	cátedra.	
	Los y las estudiantes	
	resuelven el Trabajo	
	Práctico obligatorio	
	elaborado por la cátedra.	

RA 3: Utiliza la geometría analítica para formular matemáticamente regiones en el plano y el espacio, y calcular distancias, intersecciones y orientaciones entre estas, así como el área o volumen de cada una, a partir de datos dados.

7	Clase interactiva teórica práctica	Vinculación con saberes previos. Exposición problematizadora y realización de preguntas. Respuestas de estudiantes. Utilización de GeoGebra para la interpretación geométrica de los distintos conceptos y Matrix Calc para el cálculo algebraico de autovalores y autovectores.	Organización de conceptos y casos. Complemento con videos tutoriales. Elaboración de un Informe sobre problemática presentada. Utilización de GeoGebra para la interpretación geométrica de los distintos conceptos y Matrix Calc para el cálculo algebraico de autovalores y autovectores.
	Resolución de ejercicios	•	

	Los y las estudiantes resuelven la guía aplicando saberes, mayoritariamente trabajando en grupo con la orientación y acompañamiento de los y las integrantes de la cátedra. Utilización de GeoGebra para la interpretación geométrica de los distintos conceptos y	
	Matrix Calc para el cálculo algebraico de autovalores y autovectores.	Consulta a docentes a través del foro
Aprendizaje flexible	de estudio en formato multimedia y guía de	

7. Recomendaciones para el estudio

- Realizar lectura semanal del material aportado por la cátedra en el aula virtual de la asignatura.
- Realizar los ejercicios prácticos según la guía que obra en el aula virtual.
- Contestar y participar en los foros de consulta de práctica y teoría, en los cuales quien curse puede encontrar respuestas comunes a inquietudes del desarrollo de la asignatura.
- Trabajar en grupo la mayor cantidad de tiempo posible.
- Contrastar resultados con software de cálculo numérico.

8. Metodología y estrategias de evaluación

RA 1: Resuelve sistemas de ecuaciones lineales para encontrar posibles soluciones a situaciones problemáticas planteadas a partir de distintos enunciados.

Criterios de evaluación	Actividad de evaluación	Instrumentos de evaluación	Tipos de evaluación
Plantea sistemas de ecuaciones lineales a partir de una situación	Resolución de ejercicios.	Rúbrica.	Formativa. Individual / Grupal. Autoevaluación / Coevaluación.
problemática dada.	Resolución de cuestionario	Cuestionario de evaluación.	Sumativa. Individual. Heteroevaluación.
	Presentación escrita y oral de un informe resultante de la resolución de la problemática propuesta.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación / Heteroevaluación.
Resuelve sistemas de ecuaciones lineales a partir de su	Resolución de ejercicios.	Rúbrica.	Formativa. Individual / Grupal. Autoevaluación / Coevaluación.
representación matricial.	Resolución de cuestionario	Cuestionario de evaluación.	Sumativa. Individual. Heteroevaluación.
	Presentación escrita y oral de un informe.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación / Heteroevaluación.

RA 2: Utiliza el álgebra vectorial para la comprensión de magnitudes orientadas, representadas en un sistema de referencia geométrico y/o físico.

Modela situaciones problemáticas en forma	Resolución de ejercicios.	Rúbrica.	Formativa. Individual / Grupal. Autoevaluación / Coevaluación.
--	------------------------------	----------	---

vectorial mediante bases adecuadas.	Resolución de cuestionario	Cuestionario de evaluación.	Sumativa. Individual. Heteroevaluación.
	Presentación escrita y oral de un informe.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación / Heteroevaluación.
Resuelve situaciones problemáticas vectoriales	Resolución de ejercicios.	Rúbrica.	Formativa. Individual / Grupal. Autoevaluación / Coevaluación.
	Resolución de cuestionario	Cuestionario de evaluación.	Sumativa. Individual. Heteroevaluación.
	Presentación escrita y oral de un informe.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación / Heteroevaluación.

RA 3: Utiliza la geometría analítica para formular matemáticamente regiones en el plano y el espacio, y calcular distancias, intersecciones y orientaciones entre estas, así como el área o volumen de cada una, a partir de datos dados.

Modela, en forma gráfica y analítica, problemas geométricos en los que	Resolución de ejercicios.	Rúbrica.	Formativa. Individual / Grupal. Autoevaluación / Coevaluación.
se involucran rectas y planos	Resolución de cuestionario	Cuestionario de evaluación.	Sumativa. Individual. Heteroevaluación.
	Presentación escrita y oral de un informe.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación / Heteroevaluación.
Resuelve, en forma gráfica y analítica,	Resolución de ejercicios.	Rúbrica.	Formativa. Individual / Grupal. Autoevaluación / Coevaluación.

problemas geométricos en los que se involucran rectas y planos.	Resolución de cuestionario	Cuestionario de evaluación.	Sumativa. Individual. Heteroevaluación.
	Presentación escrita y oral de un informe.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación / Heteroevaluación.
RA 1, RA 2 y RA 3			
Comunica los procedimientos,	Resolución de cuestionario.	Cuestionario de evaluación.	Sumativa. Individual. Heteroevaluación.
resultados y conclusiones de manera correcta y clara.	Presentación escrita y oral de un informe.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación / Heteroevaluación.
Contribuye a generar un clima de respeto y trabajo colaborativo en el que todos puedan	Resolución de ejercicios.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación.
participar, preguntar sus dudas, compartir sus resoluciones, etc.	Presentación escrita y oral de un informe.	Rúbrica.	Formativa. Grupal. Autoevaluación / Coevaluación / Heteroevaluación.

Al inicio del curso se efectúa una *evaluación diagnóstica* para rescatar las ideas y saberes previos de los y las estudiantes para comenzar a trabajar desde allí, y una encuesta para tener idea de la población a la que estará dirigida el curso y sobre esa base proyectar el trabajo de la cátedra. Dicha evaluación se realizará en el Aula Virtual, a través de las herramientas "Cuestionario" y "Encuesta".

La **evaluación formativa** y continua del desempeño de los y las estudiantes a lo largo del cuatrimestre se realizará mediante la participación en las actividades propuestas: resolución de ejercicios, resolución de cuestionarios, elaboración y presentación de informes.

La *evaluación sumativa* contempla dos opciones: la *aprobación directa* de la asignatura o la *aprobación no directa*. En ambos casos, las evaluaciones se realizan mediante trabajos prácticos y proyectos, tanto de resolución grupal como individual. Así mismo se proponen instancias de exámenes parciales de resolución individual.

En todas las instancias se pondera la interpretación de consignas, el análisis, relación y transferencia de contenidos, utilización de simbología y lenguaje específico, reconocimiento de conceptos, propiedades y procedimientos referidos a nociones algebraicas y geométricas elementales.

Según la comisión, se proponen dos o tres parciales teórico prácticos de resolución individual, y la entrega de dos trabajos prácticos o informes de resolución grupal o individual. Los y las estudiantes que tengan un puntaje igual o superior a 6 en cada uno de los parciales y aprueben ambos trabajos prácticos, habrán alcanzado las condiciones de cursado. Cada examen parcial y/o actividad desaprobada tendrá su correspondiente instancia de recuperación o reentrega, según el caso.

Aquellos estudiantes que quieran acceder a la modalidad de aprobación directa deberán tener aprobadas todas las actividades de evaluación propuestas, utilizando a lo sumo una instancia de recuperación. En estos casos los y las estudiantes estarán en condiciones de acceder a otra instancia evaluativa (una vez finalizado el cuatrimestre, en fecha a determinar), en la cual se evaluarán los temas que no han sido evaluados en las instancias anteriores. Esta instancia será un examen parcial o un trabajo práctico y, en caso de aprobar dicha instancia, el alumno o la alumna aprobará en forma directa la asignatura.

En caso que desapruebe esta última instancia evaluativa, tendrá acceso a un recuperatorio de la misma sólo en el caso en que no haya tenido que rendir recuperatorio de alguno de los exámenes o actividades anteriores.

En caso que no apruebe este recuperatorio, el o la estudiante mantendrá la condición de alumno regular y deberá rendir examen final de la materia.

En todos los casos que acceda a la promoción directa le corresponderá como nota final el promedio de todas las instancias aprobadas.

9. Cronograma de clases/trabajos prácticos/exámenes

Detallar el cronograma de clases, trabajos prácticos y evaluaciones previstos para el desarrollo de la asignatura. Considerando entre otros los siguientes aspectos:

- Cronograma de cada actividad presencial, híbrida, etc., indicando a cargo de quien estará docentes y/o estudiantes.
- Indicación del docente responsable de cada actividad (definición de roles tareas del equipo docente).
 - Cronograma de las instancias de evaluación.

Semana	Docente	Descripción del Tema	Horas en clase	Horas fuera de clase
1	Risueño, María Antonela (ayudantes a definir)	Presentación de la materia y pautas de cursado Álgebra matricial	7,5	3
2	Risueño, María Antonela (ayudantes a definir)	Álgebra matricial	7,5	3
3	Risueño, María Antonela (ayudantes a definir)	Sistemas de ecuaciones	7,5	3
4	Risueño, María Antonela (ayudantes a definir)	Sistemas de ecuaciones Álgebra vectorial	7,5	3
5	Risueño, María Antonela (ayudantes a definir)	Álgebra vectorial PRIMER TRABAJO GRUPAL OBLIGATORIO	7,5	3
6	Risueño, María Antonela (ayudantes a definir)	Recta en el plano Recta y plano en el espacio	7,5	3
7	Risueño, María Antonela (ayudantes a definir)	Recta y plano en el espacio PRIMER EXAMEN PARCIAL	7,5	3

8	Risueño, María Antonela (ayudantes a definir)	Espacios vectoriales	7,5	3	
9	Risueño, María Antonela (ayudantes a definir)	Espacios vectoriales Cambio de base	7,5	3	
10	Risueño, María Antonela (ayudantes a definir)	Cambio de base	7,5	3	
11	Risueño, María Antonela (ayudantes a definir)	SEGUNDO TRABAJO GRUPAL OBLIGATORIO Transformaciones lineales	7,5	3	
12	Risueño, María Antonela (ayudantes a definir)	Autovalores y autovectores	7,5	3	
13	Risueño, María Antonela (ayudantes a definir)	Autovalores y autovectores	7,5	3	
14	Risueño, María Antonela (ayudantes a definir)	Formas Cuadráticas SEGUNDO EXAMEN PARCIAL	7,5	3	
15	Risueño, María Antonela (ayudantes a definir)	Formas Cuadráticas	7,5	3	
16	Risueño, María Antonela (ayudantes a definir)	Formas Cuadráticas EXAMEN RECUPERATORIO	7,5	3	

10. Recursos necesarios

Para el desarrollo de la asignatura se consideran necesarios los siguientes recursos:

- Físicos: aulas.
- Tecnológicos: proyector multimedia, software para cálculo y graficación, aulas virtuales.

11. Función Docencia

11.1 Reuniones de asignatura y área

Se realizarán reuniones con el ayudante de trabajos prácticos de manera semanal.

11.2 Orientación de las y los estudiantes

No corresponde.

11.3. Atención de las y los estudiantes

En cuanto a las consultas presenciales, se atenderán los requerimientos de los alumnos que por algún motivo no hayan podido asistir a alguna clase, o requieran algún refuerzo de las actividades realizadas, en las clases posteriores. Así mismo se considerará adicionar un espacio de consultas en proximidad de los exámenes acordando según las posibilidades y las demandas de los estudiantes.

Además la cátedra cuenta con un foro de consultas y mensajería interna en la plataforma virtual.

12. Proyecto de Investigación en el que participa (si corresponde).				
Nombre del Proyecto:				
Grupo de Investigación:				
Director:				
Tipo de proyecto:				
Fecha de Inicio:	Fecha de Finalización:			

12. 1 Impacto del proyecto de investigación en la cátedra.

Describir de qué manera impactan las actividades de investigación en los contenidos impartidos por la cátedra.

13. Información Complementaria función Investigación y Extensión (si corresponde)

13.1. Lineamientos de Investigación de la cátedra

Para introducir a las/os estudiantes a las actividades de investigación que realiza la cátedra. Se recomienda incorporar al Programa analítico de la asignatura los lineamientos de investigación en los cuales la asignatura esté participando.

13.2. Lineamientos de Extensión de la cátedra

Para introducir a las/os estudiantes a las actividades de Extensión que realiza la cátedra. Se recomienda incorporar al Programa analítico de la asignatura los programas de Extensión en los cuales la asignatura esté participando.

13.3. Actividades en las que pueden participar las/os estudiantes

Incluir todas aquellas instancias en las cuales las/os estudiantes puedan incorporarse como participantes activos tanto en proyectos de investigación como de extensión, en la asignatura o mediante el trabajo conjunto con otras asignaturas.

14. Contribución de la asignatura a los Objetivos de Desarrollo Sostenible (ODS - opcional)

Describir la incorporación del tema ODS en las asignaturas, identificando cuál se aborda, y en caso de corresponder, las metas e indicadores propuestos.