υτηωβhi

Universidad Tecnológica Nacional

Facultad Regional Bahía Blanca

1/2

DEPARTAMENTO INGENIERÍA ELECTRÓNICA

PROGRAMA DE:

Introducción a la Electroacústica

DICTADO: Cuatrimestral ELECTIVA

HORAS DE CLASE (64 cátedra / 48 reloj)				PROFESOR RESPONSABLE		
TEÓRICAS		PRÁCTICAS				
Por semana	Total	Por semana	Total	De Inc. Lucas Di Giannia		
2 hs.cátedra	32 hs.cátedra	2 hs.cátedra	32 hs.cátedra	Dr. Ing. Lucas Di Giorgio		
1.5 hs. reloj	24 hs. reloj	1.5 hs. reloj	24 hs. reloj			

ASIGNATURAS CORRELATIVAS PRECEDENTES

PAF	DADA DENDID ADDODADAS	
CURSADAS	APROBADAS	PARA RENDIR APROBADAS
- Dispositivos Electrónicos	- Física Electrónica	- Dispositivos Electrónicos
- Medios de Enlace	- Teoría de Circuitos I	- Medios de Enlace

PROGRAMA SINTÉTICO

Unidad 1: Introducción a la electroacústica

Unidad 2: Fundamentos de la acústica

Unidad 3: Circuitos mecánicos

Unidad 4: Circuitos acústicos

Unidad 5: Principios de la transducción acústica

Unidad 6: Micrófonos y altavoces

CONTENIDO TEMÁTICO PROGRAMA ANALÍTICO

Unidad 1: Introducción. (6hs)

Definición de electroacústica. Naturaleza del sonido. Ondas sonoras. Niveles y espectros sonoros. Breve anatomía del oído humano. Respuesta auditiva. Filtros de compensación.

Unidad 2: Fundamentos de la acústica. (12hs)

Ecuaciones básicas de la acústica. Ecuaciones de onda acústica. Impedancias. Energía acústica. Intensidad acústica. Longitud de onda. Fuente esférica simple. Directividad.

Unidad 3: Circuitos mecánicos. (10hs)

Masa mecánica. Resorte. Fricción. Impedancia mecánica. Generadores. Potencia mecánica. Palancas. Transformación de impedancia mecánica. Conservación de potencia en un transformador mecánico. Conexiones en "serie" y en "paralelo".

Unidad 4: Circuitos acústicos. (12hs)

Masa acústica o inertancia. Compliancia acústica. Resistencia acústica. Impedancia acústica. Generadores acústicos. Potencia acústica. Transformador acústico. Relaciones de potencia para la bocina. Conexiones acústicas en "serie" y en "paralelo". Radiación acústica e impedancia de radiación. Ejemplos de combinaciones de fuentes simples. Pistón circular plano.

Unidad 5: Principios de la transducción acústica. (12hs)

Transductor de bobina móvil. Transductor piezoeléctrico. Transductor electroestático. Transductor mecanoacústico. Circuito equivalente del altavoz de bobina móvil.

	VIGENCIA	2025	2026	2027	2028	2029	2030
1	AÑOS						

υτηωbhi

Universidad Tecnológica Nacional

Facultad Regional Bahía Blanca

2/2

DEPARTAMENTO INGENIERÍA ELECTRÓNICA

PROGRAMA DE:

Introducción a la Electroacústica

DICTADO: Cuatrimestral ELECTIVA

Unidad 6: Micrófonos y altavoces. (12hs)

Sensibilidad. Respuesta en frecuencia. Fidelidad. Directividad. Impedancia. Ruido eléctrico. Clasificación de micrófonos según su principio de funcionamiento. Clasificación de altavoces según su principio de funcionamiento, su transductor mecanoacústico y su ancho de banda.

PRÁCTICAS EN LABORATORIO Y/O CAMPO Y/O TALLER:

No aplica.

BIBLIOGRAFÍA:

Bies, D. A., & Hansen, C. H. (2003). Engineering noise control: theory and practice. CRC press.

Di Giorgio, L. (2024). Apuntes de cátedra. Aula Virtual.

Kleiner, M. (2013). Electroacoustics. CRC Press.

Leach, W. M. (2003). *Introduction to electroacoustics and audio amplifier design*. Dubuque, IA, USA: Kendall/Hunt Publishing Company.

Miyara, F. (1999). Control de ruido. UNR Editora, Universidad Nacional de Rosario. Rosario. Argentina.

Miyara, F. (2003). *Introducción a la Acústica*. Publicación interna de la Facultad de Ciencias Exactas, Ingeniería y Agrimensura, UNR Rosario (Arg.).

Miyara, F. (2003). *Introducción a la Electroacústica*. Publicación interna de la Facultad de Ciencias Exactas, Ingeniería y Agrimensura, UNR Rosario (Arg.).

Ortega, B. P., & Romero, M. R. (2003). Electroacústica, altavoces y micrófonos. Pearson Prentice Hall.

Rodríguez Chacón, L. F. (2013). Estudio de los métodos e instrumentos de medición electroacústica para valoración del comportamiento de las ondas sonoras en el contexto de espacios abiertos y cerrados en la ciudad de Cali. Publicación interna de la Universidad de San Buenaventura. Cali (Colombia)

PROFESOR RESPONSABLE

Lucas Di Giorgio

Programa aprobado por resolución de Consejo Directivo Nº:

VIGENCIA AÑOS	2025	2026	2027	2028	2029	2030
------------------	------	------	------	------	------	------

