υτηωbhi

Universidad Tecnológica Nacional

Facultad Regional Bahía Blanca

1/3

DEPARTAMENTO INGENIERÍA MECÁNICA

PROGRAMA DE:

Estabilidad II

DICTADO: Anual

TRONCAL

HORAS DE CLASE				PROFESOR RESPONSABLE			
TEÓRICAS		PRÁCTICAS					
Por semana	Total	Por semana	Total	Ing. Marcelo Sisti			
1.5	48	1.5	48				

ASIGNATURAS CORRELATIVAS PRECEDENTES

PARA CURSAR		
APROBADAS	PARA RENDIR APROBADAS	
- Análisis Matemático I	- Estabilidad I	
Álgebra y Geometría AnaliticaFísica I	- Análisis Matemático II	
	APROBADAS - Análisis Matemático I - Álgebra y Geometría Analitica	

PROGRAMA SINTÉTICO

- Solicitaciones simples y compuestas en barras rectas y curvas.
- Deformaciones en vigas.
- Torsión de barras de sección circular.
- Energía de deformación.
- Cargas dinámicas. Impacto.
- Cargas cíclicas. Fatiga.
- Tensiones y deformaciones de origen térmico.
- Esfuerzos combinados. Tensiones combinadas.
- Teorías de falla.

CONTENIDO TEMÁTICO PROGRAMA ANALÍTICO

Unidad 1 – INTRODUCCION CONCEPTOS GENERALES: (3 horas)

Hipótesis sobre los materiales – concepto de tensión y de deformación – hipótesis sobre la deformación – Hipótesis de la conservación de secciones planas - Relación entre tensión y deformación – Ley de Hooke – Diagrama tensión , deformación – Materiales dúctiles y frágiles – Materiales ideales : elasto plástico, frágil y plástico – referencia a materiales no Hookeanos – Principio de superposición – Efecto Poisson – Modulo de elasticidad longitudinal y transversal – Coeficiente de seguridad – El camino de la resistencia de materiales - Conceptos básicos de la teoría de la elasticidad y la diferencia con resistencia de materiales

Unidad 2 – ESFUERZO AXIL PURO: (3 horas)

Definición estática y cinemática – Tipos de estructuras axiles – Deducción de fórmulas básicas – Cargas concentradas y distribuidas – dimensionado y verificación de secciones – Diagrama de esfuerzos y desplazamientos – Ecuación diferencial gobernante – Sistemas isostáticos de barras axiles (reticulados) – Determinación de reacciones, tensiones y desplazamientos – Sistemas axiles hiperestáticos – Grado de hiperestaticidad – Método de las fuerzas – Método de las deformaciones – resolución de sistemas hiperestáticos – Vigas, chapas y placas vinculadas con bielas deformables – barras axiles de sección de 2 o más materiales – Concepto de masa elástica – Plasticidad – proceso de plastificación – Tensiones y deformaciones residuales.

Unidad 3 – ESFUERZO TORSOR PURO: (3 horas)

Definición estática y cinemática – Secciones circulares – Hipótesis de Coulomb – Deducción formulas básicas – Análisis de secciones circulares macizas, huecas, de pared delgada y de varios materiales – Dimensionado y verificación – Sistemas a torsión isostáticos e hiperestáticos – Método de las fuerzas – Método de las deformaciones – Plasticidad – tensiones y deformaciones residuales.

VIGENCIA AÑOS	2023	2024	2025	2026	2027	2028
------------------	-------------	------	------	------	------	------

uτnabhi

Universidad Tecnológica Nacional

Facultad Regional Bahía Blanca

2/3

DEPARTAMENTO INGENIERÍA MECÁNICA

PROGRAMA DE:

Estabilidad II

DICTADO: Anual

TRONCAL

Unidad 4 – ESFUERZO FLECTOR PURO NORMAL: (3 horas)

Definición estática y cinemática – Deducción de fórmulas básicas – Análisis de distintas secciones – Modulo resistente – Dimensionado y verificación – Perfiles normalizados – sección de varios materiales – Barras curvas – plastificación – tensiones y deformaciones residuales.

Unidad 5 – ESFUERZO DE CORTE EN FLEXION: (3 horas)

Generalidades – Fuerza de enclavamiento – Teoría elemental de corte – Formula de Jouravski – Formula de Colignion – Diagrama de tensiones tangenciales – secciones rectangulares, circulares y de pared delgada – Flujo de corte – Centro de corte – Uniones en vigas ensambladas, remaches y soldaduras – Deformaciones debido al corte – Alabeo de secciones – Influencia sobre las tensiones de flexión – Importancia relativa de las deformaciones por corte con las de flexión.

Unidad 6 – ANALISIS DE VIGAS: (4 horas)

Generalidades – ecuación de Segundo orden de la elástica – expresión exacta y aproximada – Análisis estatico y cinemático de vigas isostaticas – Determinacion de esfuerzos y desplazamientos por integración de la ecuación de la elástica de segundo y cuarto orden – Determinacion de desplazamientos utilizando tablas y aplicaciones – Resolucion de vigas en sistemas hiperestáticos por métodos de las fuerzas.

Unidad 7 – FLEXION GENERALIZADA: (2 horas)

Introducción – Definición estática y cinemática – Flexión pura oblicua – Deducción de fórmulas básicas – relación entre la traza y el eje neutro – Radios nucleares – Flexión compuesta oblicua – Deducción de fórmulas básicas – Determinacion del eje neutro – Relación entre eje neutro y centro de presiones – Núcleo central.

Unidad 8 - ESTADO DE TENSIONES Y DEFORMACIONES EN UN PUNTO: (6 horas)

Estado tridimensional de tensiones en un punto – Tensiones en distintos planos – Tensiones y direcciones principales – Tensor de tensiones – Tensiones tangenciales máximas – Estado tridimensional de deformaciones en un punto – Analogía matemática con tensiones – Tensor de deformaciones – Estado plano de tensiones – Circulo de Mohr de tensiones – Estado plano de deformaciones – Circulo de Mohr de deformaciones – Circulo de Mohr en el espacio – Determinacion experimental de tensiones , extensómetro – Roseta de deformaciones.

Unidad 9 – ENERGIA DE DEFORMACION: (3 horas)

Definiciones – Trabajo externo – Teorema de Clapeyron, Betty y Maxwell – Energía de deformación en esfuerzo axil – Energía de deformación en esfuerzo torsor – Energía de deformación en esfuerzo flector puro – Balance energético.

Unidad 10 – CARGA DE IMPACTO DE BAJA VELOCIDAD: (3 horas)

Generalidades de cargas dinámicas – Clasificación - Carga de impacto de baja velocidad – Hipótesis básicas – Resiliencia y tenacidad – Análisis sistema masa resorte – Coeficiente de impacto – Método de la carga estática equivalente – Análisis de sistemas axiles, a flexión y a torsión.

Unidad 11 – CARGAS CICLICAS, FATIGA: (4 horas)

Generalidades – Clasificación – Coeficiente de ciclo – Resistencia a la fatiga – Curva de Wohler – Factores de corrección – Dimensionado – Criterio de Soderberg – Casos de solicitación axil, flexión y torsión – Sistema de vigas con cargas móviles – Factores concentradores de tensión – Coeficiente de

VIGENCIA AÑOS	023	2024	2025	2026	2027	2028

υτηωbhi

Universidad Tecnológica Nacional

Facultad Regional Bahía Blanca

3/3

DEPARTAMENTO INGENIERÍA MECÁNICA

PROGRAMA DE:

Estabilidad II

DICTADO: Anual

TRONCAL

concentración de tensiones (teórico, efectivo y de sensibilidad).

Unidad 12 - TENSIONES Y DEFORMACIONES DE ORIGEN TERMICO: (2 horas)

Generalidades – Deformación por efectos térmicos en barras – resolución de sistemas hiperestáticos axiles, sometidos a variación térmica – Secciones de varios materiales, sometidas a variación térmica – Dilatación volumétrica.

Unidad 13 – ESFUERZOS COMBINADOS: (6 horas)

Análisis de sistemas isostáticos sometidos a esfuerzos combinados – Determinacion de puntos críticos y tensiones y deformaciones máximas – Análisis de sistemas hiperestáticos – Determinacion de puntos críticos y tensiones y deformaciones máximas – Dimensionado y verificación.

Unidad 14 – TEORIA DE FALLAS: (3 horas)

Conceptos generales – Análisis de las posibles causas de falla en una barra traccionada – Enumeración de las distintas teorías de falla, Rankine, Guest, Saint-Venant, Beltrami, H.M.H., y tensiones tangenciales octaédricas – campo de aplicación – Comparación entre el estado uniaxial y el de corte puro – Dimensionado y verificación de la seguridad para las distintas teorías de falla.

PRÁCTICAS EN LABORATORIO Y/O CAMPO Y/O TALLER:

- Ensayo de tracción pura en laboratorio
- Ensayo de flexión en laboratorio

BIBLIOGRAFÍA:

Textos obligatorios

Apuntes aula virtual

Textos de apoyo

"MECANICA DE MATERIALES", j. Gere y S. Timoshenko, Editorial: Thomson, 1998

"MECANICA DE MATERIALES", J. Gere, Editorial: Thomson, 5ta edición 2004

PROFESOR RESPONSABLE (firma aclarada)

Programa aprobado por resolución de Consejo Directivo Nº:

VIGENCIA AÑOS	2023	2024	2025	2026	2027	2028
------------------	------	------	------	------	------	------