

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca

DEPARTAMENTO DE INGENIERIA MECÁNICA

PROGRAMA DE: ESTABILIDAD 1

Materia Nº orden: 10

HORAS DE CLASE		PROFESOR RESPONSABLE		
TEÓRICA:	S (Anual)	PRÁCTICA	S (Anual)	Ing. Fernando J. Serralunga
Por semana	Total	Por semana	Total	DOCENTES AUXILIARES
3	96	2	64	Ing. Alejandro Ratazzi

ASIGNATUKAS CORKE	LATIVAS PRECEDENTES	
PARA CURSAR	PARA RENDIR	
CURSADA	APROBADA	
Algebra y Geometría Analítica Física I	Algebra y Geometría Analítica Física I	
APROBADA		

Descripción del Eje Temático:

Conocer los conceptos de estructura, cargas, acciones y deformaciones.

Comprender el concepto de espacialidad de toda la estructura y los conceptos de equilibrio y estabilidad.

Demostrar habilidad para realizar análisis de cargas y acciones, estudiar el equilibrio de sistemas planos y espaciales isostáticos y determinar solicitaciones en sistemas isostáticos.

Comprender las leyes que gobiernan el estado elasto-resistente de los cuerpos.

Aplicar las leyes anteriores a los distintos estados simples y combinados.

Despertar curiosidad por los problemas estructurales generales y por los métodos prácticos de resolución mediante el uso de herramientas computacionales.

Objetivos: Comprender y aplicar las leyes que rigen el equilibrio de sistemas mecánicos

Programa Sintético Ordenanza 1027/04

- Estática: Sistema de fuerzas en el plano y en el espacio.
 - Fuerzas distribuidas.
 - Momentos de 1er. y 2do. orden en curvas, superficies y volúmenes.

 - Chapas rígidas vinculadas.
 - Cadenas de chapas.
 - Diagramas característicos en vigas y en pórticos.
 - Sistemas reticulados y de alma llena.
 - Líneas de influencia.

Resistencia de Materiales

- Introducción. Hipótesis Básicas.
- Estática del continuo. Estado de Tensión.
- Análisis de tensiones
- Estado de deformación.
- Relaciones entre Tensiones y Deformaciones
- Comportamiento Mecánico de los Materiales. Ley de Hooke.
- Solicitaciones simples y compuestas en barras rectas y curvas.
- Deformaciones en vigas.
- Energía de deformación.
- Torsión de barras de sección circular.
- Tensiones combinadas. Teorías de Falla

Comentarios: Se procurará promover el uso de software específico, como herramienta de diseño, resolución y comprobación de estructuras y elementos estructurales.

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca

DEPARTAMENTO DE INGENIERIA MECÁNICA

PROGR	RAMA DE:	ESTABILIDAD 1	den: 10
Unidad		CONTENIDO TEMÁTICO PROGRAMA ANALÍTICO	Horas
Temática:		100	desarrolladas
1	Centroide. To Radio de giro	e primer orden de sistemas continuos y discretos de masas. Centro de masseorema de Pappus-Guldin. Momentos de segundo orden de figuras planas. Teorema de Steiner. Momentos de segundo orden respecto de ejes rotados de gen. Ejes principales de inercia. Círculo de Mohr.	3. 20
2	respecto de la Teorema de N Reducción, e	fuerza. Momento de una fuerza respecto de un punto. Momento de una fuerza un eje. Par de fuerzas. Traslación de fuerzas y pares. Sistemas de fuerzas varignon. Reducción de sistemas de fuerzas. Sistemas equivalentes de fuerzas equilibrio y descomposición de sistemas de fuerzas. Fuerzas distribuidas entro de presión.	10
3	Concepto de isostática. Ar espaciales. Ci	ocurrentes planos. Cinemática del punto en el plano. Grados de libertado vínculo. Vinculación de un punto. Biela. Equilibrio. Reacciones. La barra axunálisis de sistemas axiles isostáticos planos simples. Sistemas concurrente inemática del punto en el espacio. Grados de libertad. Vinculación. Equilibrio análisis de sistemas axiles isostáticos espaciales simples.	15
4	Equilibrio de relativos. Vín externas y rel	chapa. Cinemática de la chapa rígida. Grados de libertad. Vinculación la chapa isostática. Reacciones. Sistema de chapas rígidas. Desplazamiento culos relativos. Cadenas cinemáticas. Vinculación. Autoisostático. Reaccione ativas. Concepto de placa. Cinemática de la placa rígida. Grados de libertad Equilibrio de la placa isostática	s 15
5	Relaciones e	ernos. Convención de signos. Diagramas. Viga simple de eje rectilíneo ntre cargas y esfuerzos. Secciones singulares. Pórticos planos de eje azado de diagramas. Verificación del equilibrio de los nudos. Illadas: 20	20
6	Reticulados p Determinación Horas desarro	lanos. Usos y tipologías estructurales más frecuentes. Condición de rigidez n de esfuerzos. Método de las secciones y de los nudos lladas: 10	10
7	esfuerzos cara elásticas: mód Ensayos de	aplificativas. Concepto de tensión. Ecuaciones de equivalencia con los acterísticos. Concepto de deformación específica. Ley de Hooke. Constantes dulo de Young, módulo de elasticidad transversal y módulo de Poisson tracción. Diagrama tensión-deformación. Límite de fluencia. Diagramas cientes de seguridad.	10
8	estados de car Deformacione Barras de dos	las fórmulas básicas. Dimensionado y verificación de secciones bajo distintos ga: concentradas, peso propio, fuerza centrífuga, etc. s. Hiperestáticos simples. Diferencias de anclaje. Variaciones de temperatura o más materiales. Energía de deformación. Depósitos de paredes delgadas resión. Tensiones en planos inclinados. Uniones remachadas y soldadas. lladas: 20	20
9	hueca. Cálculo	las fórmulas básicas. Torsión en un árbol de sección recta circular maciza y o en función de la potencia. Hiperestáticos simples. Resortes helicoidales de as. Perfiles de pared delgada abiertos y cerrados.	10

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca

DEPARTAMENTO DE INGENIERIA MECÁNICA

PPOCE	AMA DE	ESTABILIDAD 1	Materia	1
FROGR	ANIA DE.	ESTABILIDAD I	N° orde	en: 10
Unidad temática:				Horas Desarrollada
10	Vigas de do efectos. Hipo	nal. Tensión normal y curvatura. Dimensionado y verificación os o más materiales. Ecuación diferencial de la elástica. Su erestáticos simples. Flexión oblicua. Flexión compuesta nor re la traza y el eje neutro. Giros y flechas.	uperposición de	10
11	rectangulares	e la fórmula de Jouravski. Aproximación de la misma. Caso es. Influencia del corte en la deformación de las vigas. Alabeo dobre las tensiones de flexión. Vigas compuestas. Cálculo	de las secciones:	5
12	Flexión con	tracción o compresión. Torsión y esfuerzo axil. Tors	ión y flexión.	5
13	constante. Fó	e inestabilidad del equilibrio elástico. Pandeo de barras recomula de Euler. Influencia de las condiciones de vínculo. Esbelulo y verificación de secciones de piezas comprimidas.		
14		impacto. Fatiga de los metales. Fatiga bajo tensiones combi n de tensión. Cargas dinámicas.	nadas. Fatiga y	5

METODOLOGÍA UTILIZADA:

Se desarrollan clases teóricas en las que se dictan los contenidos utilizando pizarón y recursos tecnológicos disponibles; y clases prácticas donde se atienden consultas de los alumnos referidas a la resolución de problemas propuestos. En ambos tipos de clase, se realizan ejercicios típicos y se promueve el uso de software específico.

SISTEMA DE EVALUACIÓN:

Se toman dos exámenes parciales sobre los temas de Estática y dos sobre los temas de Resistencia de Materiales, con un recuperatorio por cada bloque temático. El Examen Final es de la modalidad teórico-práctico por escrito complementado eventualmente de forma oral. Para lograr la aprobación directa -ordenanza 1549 (2016)- se procede a la evaluación continua del desempeño del estudiante durante el cursado y a una evaluación integradora teórico-práctica.

PRÁCTICAS EN GABINETE:	PRÁCTICAS EN LABORATORIO Y/O CAMPO y/o TALLER:
------------------------	--

VIAJES DE ESTUDIOS O VISITAS A REALIZAR COMO PARTE INTEGRANTE DE LA FORMACIÓN IMPARTIDA:

VIGENCIA AÑOS	2017		

4/5

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca

DEPARTAMENTO DE INGENIERIA MECÁNICA

PROGRAMA DE: ESTABILIDAD 1

Materia

Nº orden: 10

BIBLIOGRAFÍA:

Estática

Estabilidad. Primer curso: Fliess E. D., Kapeluz, 1963 Lecciones de estática gráfica: Meoli H., Nigar, 1958 Ciencia de la construcción: Belluzzi O., Aguilar, 1977

Mecánica vectorial para ingenieros: Beer F.- Russell Johnston E., Mc Graw-Hill, 1979

Ingeniería mecánica: Shames I. H., Dossat, 1979

Mecánica técnica: Timoshenko S.- Young D. Hachette, 1955

Estática: Meriam J. L., Reverte, 1980

Mecánica e construcción: Kiseliov V. A., Mir, 1976

Mecánica para ingenieros: Estática, Hibbeler R. C. Cía. Editorial Continental S. A., México, 1982

Reglamento CIRSOC de acciones sobre las estructuras.

Resistencia de materiales

Elementos de Resistencia de Materiales - S. Timoshenko - D. Young

Resistencia de Materiales - S. Timoshenko

Estabilidad - Segundo Curso - E.Fliess

Resistencia de Materiales - F.Seely - J.Smith

Resistencia de Materiales - P.Stiopin

Resistencia de Materiales - F.Beer - E.Johnston

Mecánica Aplicada a la Resistencia de Materiales - A.Higdon - E.Ohlsen - W.Stiles

Curso Superior de Resistencia de Materiales - F.Seely - J.Smith

Análisis y mecánica de las Estructuras - W.M. Jenkins

AÑO	PROFESOR RESI		AÑO	PROFESOR RESPONSABLE (firma aclarada)
2017	Fernan	do Serralvuga		
	10	,		
		VI	SADO	
SECRETARIO	DE DEPARTAMENTO	_	DEPARTAMENTO	SECRETARIO ACADÉMICO
FECHA:		FECHA:		FECHA:

VIGENCIA AÑOS	2017		
	.7/		THE STATE OF

ANÁLISIS de SEGURIDAI	en EXPERIENCIAS de LABORA	TORIO y/o CAMPO 5		
TRABAJO PRACTICO Nº	TEMA:			
EQUIPO DOCENTE Y TÉCNICO DE TRABAJO:	LABORATORIO:			
	HERRAMIENTAS Y MAQUINARIA A UTII	LIZAR:		
DESCRIP. DE LOS PASOS DE LA TAREA A REALIZAR	RIESGOS ASOCIADOS A CADA PASO	MEDIDAS DE CONTROL ASOCIADAS A CADA RIESGO		

VIGENCIA AÑOS	2017	
AÑOS		